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Investigating solutions in integers of systems of algebraic equations
is one of the main objects of Diophantine Geometry. Given polyno-
mials f1(X1, ..., XN ),..., fk(X1, ..., XN ) ∈ Z[X1, ..., XN ], we consider the
solutions (x1, ..., xN ) ∈ ZN or QN to the system

f1(x1, ..., xN ) = 0
...

fk(x1, ..., xN ) = 0

The complex solutions to the above system form an algebraic variety.
We shall be especially interested in the case where such an algebraic
variety is a surface. We shall see that many interesting open problems
on Diophantine equations boil down to describing integral or rational
points on algebraic surfaces; we shall then speak of superficial prob-
lems.

The Box problem and Euler bricks.

A first superficial problem about rational points is the so called the
box problem: Does there exists a box whose sides, face diagonals and
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space diagonal all have integral length ?
The equations corresponding to the box problem are the following:

x2
1 + x2

2 = y2
3

x2
2 + x2

3 = y2
1

x2
3 + x2

1 = y2
2

x2
1 + x2

2 + x2
3 = z2

(1)

Note that it is a system of homogenous equations. Viewing each solu-
tion as a point (x1 : x2 : x3 : y1 : y2 : y3 : z) in the six-dimensional
projective space, the system (1) defines an algebraic surface S ⊂ P6.
The points on this surface we are interested in are the rational points
outside the ‘trivial‘ curves where some coordinate vanishes.
The surface S is of general type: after Bombieri’s Conjecture, it is

believed that its rational points are not Zariski-dense. However, it is
unkown whether it admits one single non-trivial rational point.

We could relax the conditions by omitting the requirement that the
space diagonal of the box be rational. In other words, we are searching
for triples of integers (x1, x2, x3) such that any two of them belong to
a Pytagorean triple. Such solids are common called Euler bricks. An
example is given by the solution

(x1 : x2 : x3 : y1 : y2 : y3) = (44 : 117 : 240 : 267 : 244 : 125). (2)

For this problem, the resulting surface is a (singular model of a) K3
surface; its rational points are Zariski-dense, as we shall now prove.
Let X be this surface, which is then defined in the five-dimensional

projective space by the system of equations
x2

1 + x2
2 = y2

3
x2

2 + x2
3 = y2

1
x2

3 + x2
1 = y2

2

(3)

First note that its only singularities are the isolated points

(0 : 0 : 1 : 1 : 1 : 0), (0 : 1 : 0 : 1 : 0 : 1), (1 : 0 : 0 : 0 : 1 : 1).
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Letting C be the (plane) conic of equation x2
1 + x2

2 = y2
3 , the projection

π : X 99K C (undefined only on the first singular point) sending

X 3 (x1 : x2 : x3 : y1 : y2 : y3) 7→ (x1 : x2 : y3)

admits for generic fibers the curves of genus 1 of equation{
x2

2 + x2
3 = y2

1
x2

3 + x2
1 = y2

2
(4)

These curves are irreducible and smooth whenever x1x2y3 , 0. For
each point p = (x1 : x2 : y3) on the conic C, the fiber Ep = π−1(p)
admits a distinguished point Op, namely the point

Op = (x1 : x2 : 0 : x2 : x1 : y3).

Taking the point Op for the origin, a group law on Ep is well defined,
so that Ep becomes an elliptic curve. Note the presence of three other
rational points, namely (x1 : x2 : 0 : −x2 : x1 : y3), (x1 : x2 : 0 : x2 :
−x1 : y3) and (x1 : x2 : 0 : −x2 : −x1 : y3); these points are torsion
points for the group law.
Consider now the following rational curveD on the surface, parametrized

as follows: for every point (a : b : c) in the conic D ′ : a2 + b2 = c2,
put 

x1 = a(4b2 − c2)

x2 = b(4a2 − c2)

x3 = 4abc

y1 = b(4a2 + c2)

y2 = a(4b2 + c2)

y3 = c3

This curve, which gives rise to an infinite family of Euler bricks, was
found by Saunders already in 1740.
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Note that the map

(a : b : c) 7→ ϕ(a : b : c) = (x1 : x2 : y3)

= (a(4b2 − c2) : b(4a2 − c2) : c3) ∈ C

is a degree three covering of the conic C by the isomorphic conic D ′
(which is also isomorphic to the rational curve D ⊂ X ⊂ P5). Now,
each fiber Ep of the already described elliptic fibration intersects the
conic in three points; if the point p = (x1 : x2 : y3) ∈ C comes from a
rational point of D via the map ϕ described above, one of these points
on Ep is rational. We then obtain that infinitely many elliptic curves
Ep adimt an extra rational point, in addition to the point Op and the
three mentioned torsion points. This new rational point is in general of
infinite order (as we shall see in a moment), so infinitely many fibers
Ep contain infinitely many rational points. This shows that the rational
points on the surface are Zariski-dense.
Geometrically, the points on Ep, coming from the curve D ′ can be

described as follows: consider the two projections π : X → C and
ϕ : D ′→ C; the correponding fiber product gives rise to a new surface
Y endowed with a finite map ψ : Y → X and an elliptic fibration
Y → D ′. This elliptic fibration admits a section σ : D → Y. The
image of a point q = (a : b : c) ∈ D ′ is a point σ(q) ∈ Y such that

π(ψ(σ(q))) = ϕ(q).

It remains to show that infinitely many points σ(q), for q a rational
point on D ′ are non-torsion. By well-known result, this amounts to
prove that σ is not identically torsion, which is equivalent to saying
that for at least one point q, σ(q) is non-torsion. We leave to the reader
the task of verifying that for q = (3 : 4 : 5) (the simples Pytagorean
triple!), the image of σ(q) on X, namely the point appearing in (2), is
non-torsion on the corresponding elliptic curve.
Let us come back to our original surface S whose (non-trivial)

rational points correspond to the (possible) solutions to the original
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Box problem. As we said, it is a surface of general type, and we do not
know whether it contains any non-trivial rational point, and not even
whether its rational points might form a infinite set, or a Zariski-dense
set.

We conjecture the finiteness of its rational points, but we can prove
unconditionally only the result below, for which we need the following
definition: Let R be the radical function, associating to a positive real
number the product of its prime divisors. Put

R(x1, x2, x3) := R(gcd (x1, x2). gcd (x2, x3). gcd (x3, x1)).

Then we can prove

Theorem 0.1 For any (possible) infinite sequences in S(Q),

R(x1, x2, x3) −→ ∞.

In the above statement, it is meant that the rational point (x1 : x2 :
x3 : y1 : y2 : y3 : z) is written with coprime integral coordinates. The
Theorem impliess that one cannot take the coordinates to be pairwise
coprime. Actually, it is easy to see that the prime 2 must divide at least
one of the gcd(x1, x2), gcd(x2, x3), gcd(x3, x1); the theorem states more-
over that infinitely many other primes must appear in the corresponding
gcd, for every sequence of solutions.
Proof. The proof consists of an application of the Chevalley-Weil
theorem; namely, we construct a finite covering Z → X to which the
rational points of X can be lifted to points defined over a number field
which only depends on R(x1, x2, x3). Then apply Falting’s theorem to
the surfaceZ, which turns out to be the product of two curves.
Suppose by contradiction that R(x1, x2, x3) is bounded on an infinite

sequence of rational points. Then there exists a finite set of primes
S such that all the rational points in such a sequence never reduce
to one singular point of the surface S modulo any prime outside the
set S. In another language, they are S-integers with respect to the
subvariety formed by the singular locus of the surface (note that after
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desingularizing, such a locus becomes a finite union of irreducible
curves).

For each pair of indices 1 ≤ h < k ≤ 3, one of the equations (1)
defining S implies that for each rational point of the surface the quantity
x2
h
+ x2

k
is a perfect square. Now, in the ring Z[i] the above expression

factors as
x2
h + x2

k = (xh + ixk)(xh − ixk).

If the product is a square and the factors are coprime, each factor is a
square (at least up to multiplication by a unit in the ring Z[i]): this is the
basic principle behind the so called Chevalley-Weil theorem. We are
supposing that the two factors can have common prime divisors only
outside the set S (more precisely, outside the set of primes in Z[i] lying
above one prime of S). Hence, there exists a finite extension κ of Q(i)
such that each factor xh + ixk is a square in the ring of integers of such
a number field.
We then obtain that the rational points on S lift to κ- rational points

on the variety defined by the system of equations

x1 + ix2 = u2
3

x1 − ix2 = v2
3

x2 + ix3 = u2
1

x2 − ix3 = v2
1

x3 + ix1 = u2
2

x3 − ix1 = v2
2

x2
1 + x2

2 + x2
3 = z2

(5)

This is the equation of another surface Z covering by a finite map (of
degree 8) our surface S. We claim that Z is isomorphic to the product
of a genus 5 curve with itself. Then, by Faltings’ theorem, the surface
Z contains only finitely many rational point on any given number field,
concluding the argument.

Let us prove our claim. Looking first at the last equation in (5),
we see that the surface Z is a degree 64 cover of a smooth quadric,
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which is isomorphic, over the complex (and even over the number field
Q(i)) to the square of the projective line. The covering Z → P1 × P1
ramifies only over the curves of equation xh ± ixh = 0, which are pairs
of lines. Removing their pre-images from the surface Z, and calling
Z∗ the corresponding open surface, we obtain an unramified cover
Z∗ → (P1 \ (F))2, where F is a finite set of cardinality 6. Now, every
unramified covering of a product is covered by a product of unramified
covers; in our case, we have an abelian unramified cover of P1 \ F, of
type (2, 2, 2), obtained as a fibred product of three degree 2 covers each
ramified over two points; the genus of the resulting curve turns out to
be five, so Faltings’ theorem provides finiteness.

The Markov equation
The equation

x2 + y2 + z2 = 3xyz,

is called the Markov equation. It is the equation of a singular affine
surfaceM in three-space. Markov triples are defined as the solutions
(x, y, z), with x, y, z positive integers, to Markov’s equation; we call any
positive integer x which appears in a Markov triple a Markov number,
and we call any pair (x, y) such that for some integer z the triple (x, y, z)
is a Markov triple a Markov pair. A question about the arithmetic
nature of Markov numbers is the following: does the greatest prime
factor of a Markov number tend to infinity? If not, there would exist
infinitely many Markov numbers which are S-units for a fixed finite set
of places S; it is still an open problem.
Recalling that R(.) denotes the radical of an integer the problem

boils down to understanding whther R(x)must tend to infinity on every
infinite sequence of Markov numbers. We do not know the answer, but
dispose of the weaker result:

Theorem 0.2 (Theorem 1 in [2]) For every infinite sequences ofMarkov
pairs, we have
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R(xy) −→ ∞.

Idea of the proof. The proof uses the subspace theorem after reducing
to a problem about itegral points. Suppose that R(xy) is bounded on an
infinite sequence. Then for some fixed integer R, the Markov equation
has infinitely many solutions (x, y, z) where z ∈ Z and x, y are units in
the ring Z[1/R].

Note that once x, y are fixed integers, the Markov equation in z can
be solved whenever the quantity

9x2y2 − 4(x2 + y2)

is a perfect square. Putting x2 = u, y2 = v we obtain the quadratic
equation

9uv − 4u − 4v = δ2,

which in homogeneous form becomes

9uv − 4uw − 4vw = δ2. (6)

This is the equation of a smooth quadric surface in P3. The condition
thatu, v, δ are integers amounts to an integrality condition on the rational
point (u : v : w : δ) with respect to the divisor w = 0 on the surface
(see [1], chap. 1 for a precise definition of the notion of integrality
with respect to a divisor). Similarly, requiring that x, y, so u, v, are
R-units amounts to the integrality with respect to the divisor uv = 0.
We must then consider the complement of the divisor D of equation
uvw = 0 on the smooth quadric defined by (6). This divisor is the sum
of three smooth conics; identifying the surface with the product P1×P1,
the divisor D has bidegree (3, 3); note that any canonical divisor K on
P1 × P1 had bidegree (−2 − 2), so the sum D + K is ample. According
to Vojta’s Conjecture, the D-integral points on the surface should not
be Zariski-dense. Although we are not able to prove Vojta’s Conjecture
for this class of open surfaces, an application of the Subspace Theorem
as described in [2] proves the desired result when z is supposed to be
an integer in the classical sense, not merely an R-integer.
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Elliptic curves over Q
Let E be an elliptic curve over Q be defined by a Weierstrass equation:

y2 = x3 + ax + b,

where a, b ∈ Z are integers with 4a3−27b2 , 0. For a rational solution
P = (x1, x2) ∈ Q

2 of the above equation, one can write the rational
numbers x, y in a unique way as

(x, y) = ( u
d2 ,

v
d3 ),

for coprime integers u, v and d > 0. We define the denominator of
P = (x, y) to be the integer d(P) = d.
The following Conjecture, which is a consequence of Vojta’s conjecture
on surfaces, gives a criterion for identifying elliptic curves by studying
the denominators of their rational points.

Conjecture 1 Let E1 and E2 be two elliptic curves over Q with in-
finitely many rational points. Suppose there exist infinitely many pairs
(P1, P2) ∈ E1(Q) × E2(Q) for which

(∗) d(P1) = d(P2).

Then E1 and E2 are isomorphic, and after identifying E1 ' E2, for all
but finitely many solutions (P1, P2) to (∗), P1 = ±P2.

Although the problem is formulated in terms of rational points on
curves, it turns out to be in fact a problem on integral points on surfaces,
as we shall see in a moment. We first recall a related result of Corrles-
Rodriganez and Schoof from [4]:

Proposition 0.3 Let P1 ∈ E1(Q) and P2 ∈ E2(Q) of infinite order; if

R(d(nP1))|R(d(nP2))

for all n ∈ N, then E1 and E2 are isogenous over Q.
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A second conclusion asserts that for all but finitely many solutions, P2
is the image of P1 by a suitable isogeny E1 → E2.
The next theorem is a particular case of the above Conjecture; it

is a curious application of a general result of Vojta on subvarieties of
semi-abelian varieties.

Theorem 0.4 Let E1 and E2 be two elliptic curves defined over Q.
Suppose that for infinitely many pairs (P1, P2) ∈ E1(Q) × E2(Q),

d(P1) = d(P2) and d(2P1) = d(2P2). (7)

Then E1 is isomorphic to E2 and, after identifying E1 with E2, for all
but finitely many such pairs, P1 = ±P2.

This is Theorem 3.32 in [3]. The proof consists in viewing the solu-
tions to (7) as integral points on the complement of a certain divisors in
a blow-up of the surface E1 × E2. Such an open surface can be embed-
ded into a semi-abelian variety, namely the product of themultiplicative
group by the abelian surface E − 1 × E2, and then the mentioned result
by Vojta applies.
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