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Let’s consider C a smooth projective absolutely irreducible curve
over a finite field Fq (shortly, a curve). As usual, one can associate to
C a Zeta function together with a corresponding Riemann Hypothesis,
which we know to be true thanks to the result of Hasse–Weil.
In particular, they gave us the so-called Hasse–Weil bound for the

number of Fq-rational points of C:

#C(Fq) ≤ q + 1 + 2g(C)
√

q, (1)

where g(C) denotes the genus of the curve C. Here, we write down
just the upper bound because, as the genus increases over a fixed finite
field, the lower bound becomes useless.
A first improvement of this bound was given by Ihara ([6]). Starting

from the inequality
#C(Fq2) ≥ #C(Fq),

together with the Weil conjectures, he showed that the upper bound (1)
is not good as g(C) � 0.
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Moreover, Ihara considered the following quantity:

A(q) := lim sup
g(C)→∞

#C(Fq)
g(C)

where the lim sup is taken over all the curves C over the (fixed) field
Fq when g(C) tends to infinity. He showed that the number A(q)
always exists and depends only on the base field Fq. Thus, from the
Hasse–Weil bound (1), we have

A(q) ≤ 2
√

q.

An important result on these side was given by Drinfeld and Vlăduţ
([3]) proving that

A(q) ≤
√

q − 1, (2)

and this bound is the best known since 1983.
Conversely, the lower bound case was (historically) more difficult.
The first result is due to Serre ([7]) showing that the number A(q) is

always nonzero:
A(q) > 0,

while Ihara ([5]) specilized in the case q = l2, with l prime power,
obtaining:

A(q) ≥
√

q − 1. (3)

So, by comparison with (2), we can conclude the equality:

A(l2) = l − 1.

The last improvement on this side is given by Zink ([8]) when q = p3

and it states the following inequality:

A(p3) ≥
2(p2 − 1)

p + 2
. (4)

On proving his result (3), Ihara considered a sequence of Shimura
curves over a same base field with increasing genus. Let’s sketch the
main ideas due to Ihara in the case of modular curves.
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Let N be a positive integer. Denote by X0(N) the modular curve
with Γ0(N)-structure, where the affine locus (non-cuspidal points)
parametrizes isomorphism classes of elliptic curves over C (also over
Q) together with a cyclic N isogeny. It is a well-known result that
X0(N) can be described over Q, and, furthermore, after the work of
Deligne–Rapoport ([2]), it has a (smooth projective irreducible) model
in Z[1/N]. Hence, for every prime number p - N , we can reduce X0(N)
mod p and obtain a (irreducible) curve X̃0(N) over Fp.
Moreover, this curve classifies the isomorphism classes of elliptic

curves over Fp + additional structure (and cusps). The interesting
fact is that X̃0(N) has many Fp2-points, whose non-cuspidal points
correspond to the so-called supersingular elliptic curves.
Now, let’s consider an increasing sequence of positive integers {Ni},

with p - Ni for all i and Ni →∞ as i →∞. Then, Ihara proved that

lim
i→∞

#X̃0(Ni)(Fp2)

g(X̃0(Ni))
= p − 1

by using computations involving Shimura curves.
Now, let’s point out the key points on the proof. In particular, why

do we get just a result for Fp2-points and not other extensions of Fp?
What Ihara was able to discover is the existence of Fp2-points in the

modular curves X̃0(Ni), in particular of supersingular elliptic curves.
It is well-known that their j-invariant lie inside Fp2 , and one obtains
exactly this degree-2 extension because themodular curve parametrizes
(isomorphism classes of) elliptic curves over C as well as Z-lattices of
rank 2 inside C (up to homothety).
So, in order to generalize this bound for q = ln with l prime integer

and n > 2, one has to look at lattices of rank n, but inside another
algebraically closed field, since the field complex numbers offer us
just rank-2 lattices. (We cannot consider rank-1 lattices because their
moduli spacewill be 0-dimensional.) First, replace the integersZ inside
its fraction field Q by the ring A := Fq[T] inside the field F := Fq(T);
hence, consider its completion F∞ at the ∞ place and its algebraic
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closure F∞. Since this extension is of infinite degree, the latter is
no more complete, meanwhile its completion C∞ is still algebraically
closed.
In this equal-characteristic setting, we need an analogue of the elliptic

curve: it is called Drinfeld module, and it can be shown ([4, Theorem
4.6.9]) that the moduli space of (isomorphism classes of) Drinfeld
modules with rank n is equivalent to the moduli spaces of A-lattices of
rank n inside C∞ (up to homothety), as far as for elliptic curve (with
n = 2).
In a similar way, one can define a level structure on Drinfeld mod-

ules: it turns out that the moduli space of rank-n Drinfeld modules
togetherwith (nontrivial) level structure can be represented by an (n−1)-
dimensional affine scheme M over A. Then, as in the elliptic curve
case, we want to reduce this scheme modulo a prime element of A. In
this case, we look for an ideal "not intersecting the level structure" (in
some sense, like V(p) does not intersect V(N) for p - N inside Spec Z),
and this is generated by a polynomial P(T) ∈ A = Fq[T], since the ring
A is a PID. The reduction modulo this ideal gives us a representable
moduli space M̃ of dimension n − 1 with many Fpn -rational points
over a degree-n extension of Fq[T]/(P(T)). Finally, there is a similar
notion of supersingular Drinfeld modules and they are defined over this
extension of degree n.
Let’s come back to Ihara’s trick. Consider a family of moduli spaces

of rank-n Drinfeld modules {Mi}i with nontrivial level structure and
a polynomial P(T) not intersecting any of these level structures. So,
it makes sense to consider the family {M̃i := Mi mod P} given by
reduction modulo the (ideal generetad by) P(T). Starting with the
scheme M̃1, look at a supersingular point inside it and a suitable curve
passing through this special point, where suitable means that it is (and
can be) chosen so that it contains many supersingular points. Then, pull
back this curve to the schemes M̃i and get other nice curves, so that
one has a family of 1-dimensional sub-locus containing supersingular
points.
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Beside this theory, in [1] Bassa, Beelen, Garcia and Stichtenoth write
down explicit recursive equations for these nice curves. In this way,
they get a lower bound for A(q) when q = p2m+1 is an odd power of
a prime number p (and m ≥ 1). They indeed find a sort of harmonic
average between two successive Drinfeld–Vlăduţ upper bounds (2):

A(p2m+1) ≥
2

1
pm−1 +

1
pm+1−1

. (5)

In particular, This lower bound can recover Zink’s inequality (4) just
setting m = 1 (so that q = p3).
Last, we want to mention some applications of this result. After

the historical Hasse–Weil bound, the problem of finding curves with
many rational points becomes again important (ACTUAL) after the
formulation of codes theory and the Goppa’s construction of good
codes, as long as other applications to cryptography.
In a theoretical side, this result can be used on the study of automor-

phisms and level structures of those curves, and also on their covering
(in this case, not Galois).
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