

Unlikely Intersections in families of abelian varieties

Fabrizio Barroero

Let *n* be an integer with $n \ge 2$ and let E_{λ} denote the elliptic curve in the Legendre form defined by $Y^2 = X(X - 1)(X - \lambda)$. Masser and Zannier showed that there are at most finitely many complex numbers $\lambda_0 \ne 0, 1$ such that the two points $\left(2, \sqrt{2(2 - \lambda_0)}\right)$ and $\left(3, \sqrt{6(3 - \lambda_0)}\right)$ both have finite order on the elliptic curve E_{λ_0} . Later Masser and Zannier proved that one can replace 2 and 3 with any two distinct complex numbers $(\ne 0, 1)$ or even choose distinct *X*-coordinates $(\ne \lambda)$ defined over an algebraic closure of $\mathbb{C}(\lambda)$.

In his book, Zannier asks if there are finitely many $\lambda_0 \in \mathbb{C}$ such that two independent relations between the points $(2, \sqrt{2(2 - \lambda_0)})$, $(3, \sqrt{6(3 - \lambda_0)})$ and $(5, \sqrt{20(5 - \lambda_0)})$ hold on E_{λ_0} .

In joint work with Laura Capuano we proved that this question has a positive answer, as Zannier expected in view of very general conjectures. We actually showed a more general result, analogous to the one of Masser and Zannier.

Theorem 1 Let $C \subseteq \mathbb{A}^{2n+1}$ be an irreducible curve defined over $\overline{\mathbb{Q}}$ with coordinate functions $(x_1, y_1, \ldots, x_n, y_n, \lambda)$, λ non-constant, such that, for every $j = 1, \ldots, n$, the points $P_j = (x_j, y_j)$ lie on E_{λ} and there are no integers $a_1, \ldots, a_n \in \mathbb{Z}$, not all zero, such that $a_1P_1 + \cdots + a_nP_n = O$

identically on *C*. Then there are at most finitely many $\mathbf{c} \in C$ such that the points $P_1(\mathbf{c}), \ldots, P_n(\mathbf{c})$ satisfy two independent relations on $E_{\lambda(\mathbf{c})}$.

In later works we extended the theorem to abelian schemes.

Fix a number field k and a smooth irreducible curve S defined over k. We consider an abelian scheme \mathcal{A} over S of relative dimension $g \ge 2$, also defined over k. This means that for each $s \in S(\mathbb{C})$ we have an abelian variety \mathcal{A}_s of dimension g defined over k(s).

Let *C* be an irreducible curve in \mathcal{A} also defined over *k* and not contained in a proper subgroup scheme of \mathcal{A} , even after a base extension. A component of a subgroup scheme of \mathcal{A} is either a component of an algebraic subgroup of a fiber or it dominates the base curve *S*. A subgroup scheme whose irreducible components are all of the latter kind is called flat.

The following theorem follows from joint works with Laura Capuano and a work of Habegger and Pila in the iso-trivial case.

Theorem 2 Let k and S be as above. Let $\mathcal{A} \to S$ be an abelian scheme and C an irreducible curve in \mathcal{A} not contained in a proper subgroup scheme of \mathcal{A} , even after a finite base change. Suppose that \mathcal{A} and C are defined over k. Then, the intersection of C with the union of all flat subgroup schemes of \mathcal{A} of codimension at least 2 is a finite set.

Fabrizio Barroero Departement Mathematik und Informatik Universität Basel Spiegelgasse 1 4051 Basel, Switzerland. email: fbarroero@gmail.com