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This is a report of the results obtained in a joint work by Amir
Akbary and Alia Hamieh. The study on the distribution of values of
L-functions associated with quadratic Dirichlet characters in the half
plane <(s) > 1

2 has been investigated by several authors. One of the
early results is obtained by Chowla and Erdős in 1953. Let d be an
integer such that d is not a perfect square and d ≡ 0, 1 (mod 4). Suppose
that, for<(s) > 0, we have

Ld(s) =
∞∑
n=1

(
d
n

)
ns

.

Here the quadratic Dirichlet character of the function Ld(s) is de-
termined by the Kronecker symbol

(
d
.

)
. The distribution of values of

Ld(s) in the half-line σ > 3
4 for varying d has been described by the

authors in [1] as the following theorem.

Theorem 1 (Chowla-Erdős) If σ > 3/4, we have

lim
x→∞

#{0 < d ≤ x; d ≡ 0, 1 (mod 4) and Ld(σ)} ≤ z}
x/2

= G(z),
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where G(0) = 0,G(∞) = 1 and G(z) is the distribution function, which
is a continuous and strictly increasing function of z.

In 1970 Elliott reconsidered this problem for σ = 1 and extended
Chowla-Erdős theorem. The following is proved in [2].

Theorem 2 (Elliott) There is a distribution function F(z) such that

#{0 < −d ≤ x; d ≡ 0, 1 (mod 4) and Ld(1) ≤ z}
x/2

= F(z)+O

(√
log log x

log x

)
holds uniformly for all real z, and real x ≥ 9. F(z) has a probabil-
ity density, may be differentiated any number of times, and has the
characteristic function

ϕF (y) =
∏
p

(
1
p
+

1
2

(
1 −

1
p

) (
1 −

1
p

)−iy
+

1
2

(
1 −

1
p

) (
1 +

1
p

)−iy)
which belongs to the Lebesgue class L1(−∞,∞).

This theorem provides detailed information on the distribution func-
tion in Chowla-Erdős theorem for σ = 1 with an explicit error term.
In 1970 Elliott explored similar expressions for several other functions
(see [3, 4, 5]).
In 2015, Mourtada and Murty [6] described the density function Mσ

for the values of the logarithmic derivative of Ld(s) for σ > 1
2 in the

following theorem.

Theorem 3 (Mourtada-Murty) Let σ > 1
2 and assume the GRH (the

Generalized Riemann Hypothesis for Ld(s)). Let F (Y ) denote the
set of the fundamental discriminants in the interval [−Y,Y ] and let
N(Y ) = #F (Y ). Then, there exists a probability density function Mσ ,
such that

lim
Y→∞

1
N(Y )

#{d ∈ F (Y ); (L
′

d/Ld)(σ) ≤ z} =
∫ z

−∞

Mσ(t)dt.
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Moreover, the characteristic function ϕFσ (y) of the asymptotic distri-
bution function Fσ(z) =

∫ z

−∞
Mσ(t)dt is given by

ϕFσ (y) =
∏
p

(
1

p + 1
+

p
2(p + 1)

exp
(
−

iy log p
pσ − 1

)
+

p
2(p + 1)

exp
(
iy log p
pσ + 1

))
.

Here Amir Akbary and Alia Hamieh note that it is possible to remove
the GRH assumption in Theorem 3 by applying an appropriate zero
density theorem for L-functions of quadratic Dirichlet characters. They
describe their approach for certain cubic L-functions.

Notice that if d is a fundamental discriminant then

Ld(s) =
ζQ(
√
d)(s)

ζ(s)
, (1)

where ζQ(√d)(s) is the Dedekind zeta function of Q(
√

d) and ζ(s) is the
Riemann zeta function. For k = Q(

√
−3), letOk = Z[ζ3] be the ring of

integers of k, where ζ3 = e
2π i

3 . Let

C := {c ∈ Ok ; c , 1is square free and c ≡ 1 (mod 〈9〉)}.

Similar to (1), we can define

Lc(s) =
ζk(c1/3)(s)

ζk(s)
, (2)

where ζk(c1/3)(s) is the Dedekind zeta function of the cubic field k(c1/3)

for c ∈ C.
We set

Lc(s) =

{
log Lc(s) (Case 1),
(L
′

c/Lc)(s) (Case 2).

The following was the main result of this talk.
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Theorem 4 (Akbary-Hamieh) Let σ > 1
2 . Let N(Y ) be the the num-

ber of elements c ∈ C with norm not exceedingY . There exists a smooth
density function Mσ such that

lim
Y→∞

1
N(Y )

#{c ∈ C : N(c) ≤ Yand Lc(σ) ≤ z} =
∫ z

−∞

Mσ(t)dt .

The asymptotic distribution function Fσ(z) =
∫ z

−∞
Mσ(t)dt can be con-

structed as an infinite convolution over prime ideals p of k,

Fσ(z) = ∗pFσ,p(z),

where

Fσ,p(z) =


1
N(p) + 1

δ + 1
3

(
N(p)

N(p) + 1

) ∑2
j=0 δ−ap, j (z) if p - 〈3〉,

δap,0(z) if p - 〈1 − ζ3〉.

Here δa := δ(z − a), δ is the Dirac distribution, and

ap, j := ap, j(σ) =


2<

(
log(1 − ζ j3 N(p)−σ

)
in (Case 1),

2<

(
ζ
j
3 log(N(p))

N(p)σ − ζ j3

)
in (Case 2).

Moreover, the density function Mσ can be constructed as the inverse
Fourier transform of the characteristic function ϕFσ (y), which in (Case
1) is given by

ϕFσ (y) = exp(−2yi log(1 − 3−σ))
∏
p-〈3〉

©« 1
N(p) + 1

+
1
3

N(p)
N(p) + 1

2∑
j=0

exp(
−2yi log

�����1 − ζ
j
3

N(p)σ

�����
))
,
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and in (Case 2) is given by

ϕFs (y) = exp
(
−2yi<

log(3)
3σ − 1

) ∏
p-〈3〉

©« 1
N(p) + 1

+
1
3

N(p)
N(p) + 1

2∑
j=0

exp

(
− 2yi

· <

(
ζ
j
3 log(N(p))

N(p)σ − ζ j3

)))
.

As an application of the above theorem note that according to the
class number formula

Lc(1) =
(2π)2

√
3hcRc√
|Dc |

The value Lc(1) has some arithmetic significance. Here, hc, Rc and
Dc = (−3)5(N(c))2 are respectively the class number, the regulator,
and the discriminant of the cubic extension Kc = k(c1/3) (see [7], page
427] for more explanation). On the other hand by the Brauer-Siegel
theorem we have log(hcRc) ∼ log |Dc |

1/2, whenever N(c) → ∞ (Note
that the number fields Kc all have a fixed degree (namely 6) over Q).

Corollary 5 Let E(c) = log(hcRc) − log |D |1/2. Then

lim
Y→∞

1
N(Y )

#{c ∈ C : N(c) ≤ YandE(c) ≤ z} =
∫ z+log(4

√
3π2)

−∞

M1(t)dt,

where M1(t) is the smooth function described in Theorem 4 (Case 1)
for σ = 1.

As another application note that the Euler-Kronecker constant of a
number field K is defined by the relation

γK = lim
s→1

(
ζ
′

K (s)
ζK
+

1
s − 1

)
.

From (2) We concluded that
L
′

c(1)
Lc(1)

= γKc − γk . Thus, we get the

following corollary of Theorem 4 (Case 2), since γk is fixed.
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Corollary 6 There exists a smooth function M1(t) (as described in
Theorem 4 (Case 2) for σ = 1) such that

lim
Y→∞

1
N(Y )

#{c ∈ C : N(c) ≤ Yand γKc ≤ z} =
∫ z−γk

−∞

M1(t)dt.

References

[1] S. Chowla and p. Erdős, A theorem on the distribution of the
values of L -function. Indian Math. Soc. (N.S.), 15:1118–1951.

[2] P. D. T. A. Elliott, The distribution of the quadratic class number,
Litovsk. Mat. Sb., 10:189–197, 1970.

[3] P. D. T. A. Elliott, On the distribution of the values of Dirichlet
L-series in the half-plane σ ≥ 1

2 , Nederl. Akad.Wetensch. Proc.
Ser. A 74=Indag. Math., 33: 222–234, 1971.

[4] P. D. T. A. Elliott, On the distribution of argL(s, χ) in the half-
plane σ ≥ 1

2 , Acta Arith., 20: 155–169, 1972.

[5] P. D. T. A. Elliott, On the distribution of the values of quadratic
L-series in the half-plane σ ≥ 1

2 , Invent. Math., 21: 319–338,
1973.

[6] MariamMourtada and V. Kumar Murty, Distribution of values of
L
′

/L(σ, χD), Mosc. Math. J. 15 (2015), no. 3, 497–509, 605

[7] Honggang Xia, On zeros of cubic L-functions, J. Number Theory
124 (2007), no. 2, 415–428.

Andam Mustafa
Dipartimento di Matematica e Fisica
Università Roma Tre
Largo San Leonardo Murialdo,1.
email: andam.mustafa@gmail.com

72


